Very rudimentary foundations of mathematics

for advanced high-school students

This brief essay was the consequence of a discussion | had with the Head of Mathe-
matics at Sherborne School in 1981. | had suggested that the School Maths Project
might consider including a short discussion piece about the foundations of math-
ematics. Nothing other than this essay came out of that discussion. The initial
paragraphs, dealing with matrices and Cayley, were intended as a bridge between
the pupils’ earlier algebra studies and the subsequent material on foundations. |
emphasise that the essay is a very rudimentary introduction to the foundations of
mathematics.

Most of the material we have been studying in A-level algebra was first discovered
last century. Curiously, determinants were first studied before matrices; it was only
around the middle of the nineteenth century that A. Cayley, J.J. Sylvester and
others began to look at the array of numbers (the matrix) in a determinant as an
object to be examined on its own. The word ‘matrix’ was first used in this context
by Sylvester, in 1850, although Cayley, whose first paper on matrices appeared in
1855, is generally considered to be the founder of matrix theory.

As a schoolboy, Arthur Cayley (1821-95) showed sufficient promise to persuade his
teachers and his father to send him to Cambridge instead of the family business.
After a distinguished mathematical career as a student at Cambridge, Cayley was
elected a Fellow of Trinity College, a position he vacated after only three years in
order to avoid taking Holy Orders. He then spent fifteen years as a professional
lawyer, at the same time publishing nearly two hundred original papers in mathe-
matics. Finally, he was appointed to a chair of mathematics at Cambridge, and was
able to devote his full working time to teaching and research in many areas of the
subject. He is particularly famous for his contributions to matrix theory, projective
geometry, and invariant theory, and was one of the most prolific mathematicians in
history: only Cauchy and Euler have published more. In spite of this, Cayley had
a wide range of leisure interests, including literature, painting, and architecture.
To Cayley is also due the first presentation of the axioms of abstract group theory
(1849),' which you studied in the A-level course.

Let's look more closely at the axiomatic method. The basic idea of the method is to
write down certain statements—the axioms—uwhich we accept as true in the theory
we are developing, and from which we deduce theorems systematically. Before we
write down our axioms, we must agree on two matters: one, the rules of argument—
the logic—that we shall use; the other, the objects that we shall accept as requiring
no definition (the undefined terms).

ILest you imagine that such objects as matrices and groups are of no importance outside the
context of pure mathematics, here is a remark of the eminent nineteenth century physicist P.G.
Tait, a remark made about matrix theory but nowadays equally applicable to group theory: ‘Cayley
is forging the weapons for future generations of physicists.’



Surprisingly, not all mathematicians agree on the rules of argument which they will
allow in proofs. Indeed, since L.E.J. Brouwer (1881-1966) published his thesis [3] in
1907, there has been considerable controversy over this point. However, it is fair to
say that most mathematicians today work with the logic known as classical logic.

To illustrate the idea of undefined terms, we turn to geometry, where we have such
undefined terms as point, line and so on. In fact, when Euclid wrote his famous
Elements of Geometry around 300BC, he attempted to define some of these terms.
For example, he defined a point to be ‘that which has no part’, and a line to be ‘a
breadthless length’. Perhaps you will agree that it is better to leave point and line
as undefined terms, rather than make such cumbersome, unsatisfactory definitions
as were given by Euclid.

Discussion topic: Why are Euclid’s definitions of point and line unsatis-
factory?

The modern axiomatic developments of Euclid's geometry usually take as undefined
terms not only point and line, but also lie on (as in ‘the point P lies on the line'),
between (as in ‘on the line segment AB, C lies between A and B') and congruent (a
means of comparing line segments without using a notion of length, and comparing
angles without a measure corresponding to degrees or radians) ; see [6].

Having agreed on our logic and on our undefined terms, we can write down the
axioms whose consequences we are to study. It then seems natural to require that
these axioms satisfy as many of the following criteria as possible:

Consistency: it should not be possible to deduce a contradiction (such as ‘0 = 1)
from the axioms.

Adequacy: we should be able to deduce from the axioms all the theorems that we
want.

Independence: if we omit an axiom, then that axiom should not be derivable from
the other axioms.

Relevance: the axioms should lead to interesting mathematics.

An example of inconsistency occurs in set theory. Towards the end of last century,
the German logician Gottlob Frege produced the first axioms for the theory of sets.
To Frege's dismay, just before his theory was published, Bertrand Russell pointed
out to him that his axioms led to a contradiction. The problem arose with the
following axiom, which we shall write in verbal, as distinct from Frege's symbolic,
form:

If P is any property, then there is a set consisting of all the objects with
the property P. *)



Russell’s contradiction (known generally as Russell’s paradox?) deals with the case
where P is the property ‘is a member of itself’. According to Frege's axiom (*),
the set

S ={z:zisaset, and = is not a member of =}

exists; call it S. A little thought should convince you that S is a member of itself if
and only if S is not a member of itself. This is clearly absurd, and so if we accept
(*) as an axiom of set theory, we have an inconsistent system of axioms.

Project: What undefined terms and axioms are adopted in Zermelo—
Fraenkel set theory, which for about a century has been the most widely
accepted foundation of mathematics?

To illustrate the phenomenon of inadequacy, we consider axioms for the positive
integers. The undefined terms here are positive integer and successor, where the
successor of 1 is 2, that of 2 is 3, and so on. The axioms are:

P1 1 is a positive integer.
P2 Every positive integer has a unique successor, which is also a positive integer.
P3 1 is not the successor of any positive integer.

P4 Two positive integers with equal successors are themselves equal.

As they stand, these axioms are inadequate for the development of number theory,
as we cannot prove from them anything which allows us to justify the method of
induction. In order to arrive at an adequate system, we therefore introduce as an
axiom the Principle of Mathematical Induction:

P5 |If a set S of positive integers contains 1, and contains the successor of n
whenever n itself belongs to S, then S is the set of all positive integers.

It turns out that these five axioms, first given by Giuseppe Peano in 1889, are
adequate for the development of number theory.

Another example of inadequacy arises in geometry. Euclid’s original axioms did not
enable him to prove that every line contains at least one point. It appears that
Euclid did not realise this gap in his theory, as he certainly assumed that lines did
contain points when he proved his theorems.

Geometry also provides us with the most famous example of independence of axioms.
One version of Euclid’'s axiom of parallels states that if P is a point and [ is a line
not passing through P, then there exists a unique line through P parallel to [. For
nearly two thousand years, mathematicians struggled to prove that this axiom was
dependent on—that is, could be proved from—the other axioms of Euclid's geom-
etry. Working separately in the early years of the nineteenth century, C.F.G Gauss,
Janos Bolyai, and Nikolai Lobachevsky each developed a non-Euclidean geometry,

2For more on paradoxes see [13].



in which Euclid's axiom of parallels fails to hold but the other Euclidean axioms
do hold. Of course, there then remained the possibility that the axioms of non-
Euclidean geometry were inconsistent. Later that century, it was shown by E.
Beltrami that, provided Euclid's original geometry is consistent, the non-Euclidean
geometry of Gauss, Bolyai, and Lobachevsky is also consistent. It followed from
this that Euclid's axiom of parallels could not be proved from the other axioms of
Euclidean geometry.

Actually, independence of the axioms we study is not such an important requirement
as some of the others. It may be unsatisfactory from an aesthetic point of view,
but it is not incorrect in any way, to have some of our axioms provable as theorems
from the others.

The notion of relevance of our axioms surely requires little further comment, except
that we should realise that to describe a part of mathematics as interesting or sig-
nificant is to make, not a provable assertion, but a value judgement. Do not expect
all mathematicians to agree with you on what is, or is not, significant mathematics.

A more profound matter on which mathematicians are liable to disagree is the
answer to the question ‘What is mathematics?'.?> One view was expressed, rather
cynically, by Bertrand Russell:

Mathematics is the subject in which we do not know what we are talking
about, nor whether what we say is true.

This comment reflects a view shared by many, in which mathematics is seen as a
formal game played with meaningless symbols according to certain conventions.?
The best known exponent of this formalist philosophy of mathematics was David
Hilbert (1862-1943), whose immensely fertile mind dominated mathematical think-
ing in the late nineteenth and early twentieth centuries.® It was Hilbert's belief that
mathematics was the game of set theory, played with the rules of classical logic
and with certain other rules laid down in the axioms for creating sets. Although
these axioms referred to ‘sets’, Hilbert contended that, ultimately, there was no
real meaning to the word ‘set’ used in mathematics: for him, that word could be
replaced by ‘beer mug’, and the axioms would still be of interest and mathematical
significance.

A particular aspect of Hilbert's philosophy was his interpretation of the phrase ‘there
exists'. For Hilbert, to prove that there exists a number with a certain property it was
sufficient to assume that no such number exists, and then deduce a contradiction.
However, such a procedure would not help us to calculate the number in question.
This was one reason why Brouwer was so firmly opposed to Hilbert's formalist

3While it is not a deeply philosophical viewpoint, W.W. Sawyer’s description of mathematics as
‘the classification and study of all possible patterns’ appeals to many practitioners of the subject.
By ‘pattern’, Sawyer means ‘almost any kind of regularity that can be recognized by the mind’
[15, page 12].

4 Actually, this was not quite Russell's view: he considered mathematics to be essentially the
formal logic of propositions.

5See [14] for a very readable and interesting account of the life and times of Hilbert.



philosophy. Another reason for Brouwer's opposition was that Brouwer regarded
mathematical objects as having a reality which Hilbert denied them. In particular,
for Brouwer the positive integers were creations of the human intellect, and not
meaningless symbols scratched on paper with a pen. Also, he believed that to
justify the claim that there exists an object = with the property P, we must provide
a means of finding/calculating an object = and showing algorithmically that it has
that property. In 1930, Brouwer's successor in Amsterdam, Arend Heyting, captured
the essence of Brouwer’'s methods by introducing intuitionistic logic [10], intended
as a replacement for classical logic; that logic is of considerable interest to logicians
and computer scientists, but only a minority® of mathematicians today base their
research on it.

For a long time, Hilbert hoped that it would be possible to prove the consistency of
his formal game of mathematics by means acceptable to the followers of Brouwer’s
philosophy of Intuitionism.” He believed that if the consistency of axiomatic mathe-
matics could be established by Brouwerian methods and reasoning wholly within the
axiomatic system, then the use of his methods (such as that for proving existence
by contradiction) would be justified. However, a result published by Kurt Gédel
in 1931 showed that Hilbert's hopes were unfounded: very roughly, Gédel’s second
incompleteness theorem says that for any decent® set of axioms, the consistency of
the resulting mathematics cannot be proved without resorting to reasoning outside
the system itself.”

The controversy over the nature of mathematics was not ended by Gédel's theorem.
Indeed, many mathematicians would argue that the justification of Hilbert's methods
lies, not in any proof of the consistency of his axiom system, but in the enormous
success of Hilbertian mathematics in the description of the physical universe.'? As
Hilbert himself said,

[denying mathematicians the use of Hilbert's methods] would be the
same, say, as proscribing the telescope to the astronomer, or to the
boxer the use of his fists.

Another philosophy to which many mathematicians (at least, among those who think
about the philosophy of their subject) subscribe is known as Platonism. Following
the great Greek philosopher Plato and his mentor, Socrates, the Platonist!'! believes
that mathematical objects have a real existence in their ‘perfect forms’, and that
when we prove theorems about, say groups, we are really saying something about the
perfect form of group. A proper discussion of Platonism requires more background

6 A minority that has grown substantially in the last 60 years.

TFor more on Brouwer's intuitionism, see [11]; pages 105-106 of that book present Heyting's
original axioms for intuitionistic logic.

8We make no attempt to clarify what we mean here by ‘reasonable’, other than to say that it
covers the current axioms for set theory, geometries, groups, ... .

9For a relatively accessible account of Godel's theorems see [4, 12].

10 Among the leading exponents of Hilbert's views were those mathematicians who wrote collec-
tively under the pseudonym Nicolas Bourbaki [5, 8, 7].

11 Godel was one of the leading Platonists of his day.



than we can assume in this brief, rudimentary outline; suffice it to emphasise here
that the platonist, like the intuitionist, regards mathematical objects as real entities,
not simply meaningless symbols.

While it may be the case that a majority of practising mathematicians today would
endorse either the Hilbert—Bourbaki philosophy of Formalism or else that of Platon-
ism, there is an active minority group of researchers, following in the footsteps of
Errett Bishop (1928-83) [1, 2], who adopt a philosophy akin to Brouwer's Intuition-
ism. Thus, in contrast to what many non-mathematicians believe, the nature and
methodology of mathematics are not beyond dispute [9]. Ultimately, any philosophy
of mathematics is a matter of opinion and value judgement, and is, or should be,
open to reasonable discussion and reasoned criticism by the mathematical commu-
nity.

Discussion topics:

1. In light of Brouwer's criticism of Hilbert's formalist mathematics, consider the
following ‘obvious’ statement: If a1, as,as, ... is an infinite sequence of 0's
and 1's,, then either a,, = 0 for all n, or there exists n with a,, = 1. Discuss
why this statement was not acceptable to Brouwer.

2. Discuss the distinction, if any, between pure and applied mathematics.

3. Why, if at all, does the nature of mathematics matter?
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